ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
White House taps Douglas Weaver for NRC role
The Trump White House has nominated seasoned nuclear regulatory expert Douglas Weaver for a commissioner seat on the Nuclear Regulatory Commission. If confirmed, Weaver would fill the seat vacated by NRC commissioner Annie Caputo, who resigned in July.
Weaver’s nomination was sent earlier today to the Senate Environment and Public Works Committee. If confirmed, he would finish the remainder of Caputo’s term, which expires June 30, 2026.
W. Biel, TEXTOR Team
Fusion Science and Technology | Volume 47 | Number 2 | February 2005 | Pages 246-252
Technical Paper | TEXTOR: Diagnostics | doi.org/10.13182/FST05-A703
Articles are hosted by Taylor and Francis Online.
Spectroscopy in fusion experiments is an important tool to identify impurities in the plasma and to analyze their properties based on the measurement of their characteristic line radiation. For the temperature range typical in fusion plasmas, the dominant part of each impurity in the plasma is highly ionized, and its most intense spectral lines radiate in the vacuum ultraviolet (VUV) wavelength range (10 to 200 nm). The VUV overview spectrometers installed at TEXTOR working at moderate resolution allow one to identify intrinsic plasma impurities such as B (Z = 5), C (Z = 6), Fe (Z = 26), and Cu (Z = 29) as well as seeded impurities such as Ne (Z = 10) and Ar (Z = 18) and to derive information on their relative densities in the plasma. Optimizing these spectrometers for high time resolution provides a tool to analyze transient phenomena like impurity transport processes. In combination with impurity transport modeling and atomic data, the radial distribution of the radial diffusion coefficient is determined from the experimental data. For the case of ohmic discharges, the effective radial diffusion coefficient is found to be anomalously enhanced by more than one order of magnitude as compared to neoclassical predictions.