ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Hyun Seok Kim, Hyunsun Han, Ki Min Kim, Jwa-Soon Kim, Sang Hee Hong
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 95-99
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A6990
Articles are hosted by Taylor and Francis Online.
A two-dimensional numerical modeling is carried out to simulate argon plasma-neutral transport in a linear divertor simulator with an axisymmetric cylindrical geometry. A pure argon plasma flow is introduced from the source region into the transport region, and pumped out near the target plate. This numerical modeling is based on a time-dependent Braginskii's fluid formulation for plasma transport and a simple diffusion model for neutral transport. The Bohm diffusion model is adopted for calculation of radial diffusion coefficients across the parallel magnetic field in the simulator. Using the design and operation parameters of the Multi-Purpose Plasma (MP2) facility at the National Fusion Research Institute (NFRI) in Korea, argon plasma properties such as density and temperature distributions are calculated, and the formation of ionization front is found in the transport region. Plasma equilibrium profiles along the near axis turn out to be actually unaffected by the pumping positions along the cylindrical wall. Moreover, a gas target divertor concept is numerically simulated to find out puffing effects as well as pumping roles. As increasing the puffing rate at the target plate, not only the ionization front in the plasma density profile is gradually moving toward the entrance region, but also plasma density and electron temperature at the target are dramatically reduced. Two relatively peaked poles in the neutral density profile are resulted from puffing and recycling neutrals, respectively.