ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
E. T. Alger, E. G. Dzenitis, E. R. Mapoles, J. L. Klingmann, S. D. Bhandarkar, J. G. Reynolds, J. W. Florio, D. M. Lord, C. Castro, K. Segraves
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 269-275
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST08-3506
Articles are hosted by Taylor and Francis Online.
Inertial confinement fusion ignition experiments in the National Ignition Facility require a capsule containing deuterium-tritium fuel at cryogenic temperatures. To better understand how to produce and control the required uniform fuel ice layer, experimental layering targets are fabricated and assembled to be dimensionally similar to the ignition targets and vacuum leaktight at 18 K. Low production yield of these targets demanded a more quantitative understanding of the interfacial behavior of bonded joints and required the development of more deterministic assembly methods. Each sealing joint was individually analyzed, and target components, assembly processes, and tooling were modified as needed to make robust leaktight targets. The function, design, and assembly methods of experimental layering targets are described.