ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The legacy of Windscale Pile No. 1
The core of Pile No. 1 at Windscale caught fire in the fall of 1957. The incident, rated a level 5, “Accident with Wider Consequences,” by the International Nuclear and Radiological Event Scale (INES), has since inspired nuclear safety culture, risk assessment, accident modeling, and emergency preparedness. Windscale also helped show how important communication and transparency are to gaining trust and public support.
V. G. Sokolov, A. K. Sen
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 270-272
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST05-A660
Articles are hosted by Taylor and Francis Online.
A series of basic transport physics experiments are performed in Columbia Linear Machine, which generates a steady-state collisionless cylindrical plasma column in uniform axial magnetic field. The focus is on the isotopic scaling of ion thermal conductivity due to ion temperature gradient-driven modes. The experiments are performed using two different gases: Hydrogen and Deuterium. The results indicate reduction of thermal transport with increasing isotopic mass leading to a scaling K[perpindicular] ~ Ai-0.5, where Ai is the mass number of the isotope of hydrogen. This inverse gyro-Bohm scaling is similar to the tokamak results, but is in stark contradiction to most present theoretical models predicting Bohm (Ai0) or gyro-Bohm (Ai0.5) scaling. A series of experiments to explore the physics basis of this scaling has been also performed.