ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Energy Secretary to speak at the 2025 ANS Winter Conference & Expo
In less than two weeks, the American Nuclear Society’s second annual conference of the year, the 2025 ANS Winter Conference & Expo, will come to Washington, D.C.
Today, ANS is announcing that Energy Secretary Chris Wright will be joining the list of nuclear leaders slated to speak at the conference.
Click here to register for the meeting, which will take place November 9–12 in Washington, D.C., at the Washington Hilton. Be sure to do so before November 7 to take advantage of priority pricing.
George Tsotridis
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 198-208
Technical Paper | doi.org/10.13182/FST98-A64
Articles are hosted by Taylor and Francis Online.
Plasma-facing components in tokamak-type fusion reactors are subjected to intense heat loads during plasma disruptions, causing melting and evaporation of the metallic surface layer. Simultaneously, large eddy currents are induced in the plasma-facing components, which interact with the large background magnetic field, hence producing substantial electromagnetic loads that have a strong influence on component integrity and lifetime. The depths and shapes of the molten layers of pure tungsten metal, which are produced when a high heat load strikes the surface of the material during a plasma disruption under the simultaneous influence of external body forces arising from electromagnetic fields, were studied by using a two-dimensional transient computer program that solves the equations of continuity, momentum, and energy, with monotonically varying external body forces. It is demonstrated that external body forces, having an outward direction from the plane of the test piece and with different gradients with respect to the radial direction, influence the shapes and depths of molten layers to a significant extent. Results are presented for a range of energy densities, disruption times, and gradients of linearly varying external body forces.