ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Jon D. McWhirter, Michael E. Crawford, Dale E. Klein
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 187-197
Technical Paper | doi.org/10.13182/FST98-A63
Articles are hosted by Taylor and Francis Online.
Experimental data are presented for the pressure drop of a flowing conducting fluid within a packed bed of spheres through a transverse magnetic field. Pertinent background information is presented about flows in porous media followed by relevant details of the experiment apparatus and equipment. The data are presented and discussed and then compared with the predictions from the previously developed analytical model. It is found that good agreement exists between the data when plotted in dimensionless form. As with the other equations for fluid flow in porous media, the analytical forms specify behavior to within an experimentally determined constant. A new constant, the Sanders constant, contained within the equation for the resistance ratio, is proposed. The experiment data are compared with the analytical model, and the best value of the Sanders constant is estimated.