ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Baiquan Deng, Zaixin Li, Jinhua Huang, Tao Yuan
Fusion Science and Technology | Volume 46 | Number 4 | December 2004 | Pages 548-560
Technical Paper | doi.org/10.13182/FST04-A590
Articles are hosted by Taylor and Francis Online.
A summary of the tritium system design activities for the engineering outline design of a fusion experimental reactor [Fusion Experimental Breeder-E (FEB-E)] is presented. This paper is divided into three sections. First, the geometry, loading features, and tritium concentrations in liquid lithium of tritium breeding zones in blankets are described. Then, a tritium flowchart corresponding to the tritium fuel cycle system is constructed, and the SWITRIM code is developed for calculation of the inventories in the ten subsystems. Results show that the necessary initial tritium storage to start up the reactor with fusion power of 143 MW is ~317 g. Finally, a tritium leakage analysis under different operation circumstances is performed. It is found that the potential danger of tritium leakage could result from the exhausted gas of the divertor system. It is important to elevate the tritium burnup fraction and reduce the tritium throughput.