ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Edward A. Lazarus, Michael C. Zarnstorff, Stuart R. Hudson, Long-Poe Ku, Douglas C. McCune, David R. Mikkelsen, Donald A. Monticello, Neil Pomphrey, Allen H. Reiman
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 209-214
Technical Paper | Stellarators | doi.org/10.13182/FST04-A557
Articles are hosted by Taylor and Francis Online.
It is demonstrated that there exists a plausible evolution of the discharge from the vacuum state to the desired high beta state with the self-consistent bootstrap current profile. The discharge evolution preserves stability and has adequate quasi axisymmetry along this trajectory. The study takes advantage of the quasi-axisymmetric nature of the device to model the evolution of flux and energy in two dimensions. The plasma confinement is modeled to be consistent with empirical scaling. The ohmic circuit, the plasma density, and the timing of the neutral beam heating control the poloidal flux evolution. The resulting pressure and current density profiles are then used in a three-dimensional optimization to find the desired sequence of equilibria. In order to obtain this sequence, active control of the helical and poloidal fields is required. These results are consistent with the planned power systems for the magnets.