ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Hayato Kawazome, Shintaro Tsuboi, Katsumi Kondo, T. Mizuuchi, F. Sano, K. Nagasaki, H. Okada, S. Kobayashi, K. Takahashi, H. Shidara, Y. Manabe, M. Kaneko, Y. Ohno, T. Takamiya, Y. Nishioka, H. Yukimoto, S. Nakazawa, S. Nishio, Y. Fukagawa, M. Yamada, T. Obiki
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 135-141
Technical Paper | Stellarators | doi.org/10.13182/FST04-A549
Articles are hosted by Taylor and Francis Online.
Behavior of intrinsic and injected impurities has been investigated in Heliotron-J plasmas by spectroscopic methods. Intrinsic impurities are identified with the vacuum ultraviolet grazing incidence spectrometer in neutral beam injection (NBI)-heated plasmas. Na-like Ni XVIII and Mg-like Ni XVIII are observed only in NBI heating phase. Helium gas is injected into electron cyclotron heating plasmas. In the density scan experiments, He II line intensities, which are normalized by the electron density, increase with decreasing electron density. For intrinsic impurities, similar dependence of line intensities on the electron density is observed. The normalized line intensity indicates the particle number of ions penetrated into the core plasma. In addition, the edge electron density is in proportion to the core electron density. These results may reflect the screening effect due to electron collisional ionization at the edge plasma. In the carbon limiter insertion, the CH radical band spectrum is observed. The carbon limiter head is formed in the hemisphere. The spatial distribution of the band emission is asymmetrical to the main axis of the limiter head. A good agreement is obtained between the spatial distribution of emissions of the band spectrum and the camera image with bandpass filter.