ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Rainer Burhenn, Jürgen Baldzuhn, Rudolf Brakel, Hartmut Ehmler, Louis Giannone, Peter Eckhard Grigull, Jens Knauer, Maciej Krychowiak, Matthias Hirsch, Katsumi Ida, Henning Maassberg, Gerald Kent McCormick, Ekkehard Pasch, Henning Thomsen, Arthur Weller, W7-AS Team, ERCH Group, NI Group
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 115-128
Technical Paper | Stellarators | doi.org/10.13182/FST04-A547
Articles are hosted by Taylor and Francis Online.
The dependence of impurity transport on plasma parameters in the modular stellarator Wendelstein 7-AS was investigated by means of a laser blow-off technique. An increased impurity transport at higher heating power and lower magnetic field strength as well as no effect of the isotope composition on the impurity confinement was observed. The most critical scaling with respect to stationary operation at high density is the improved confinement of impurities at high densities, leading to a degradation of plasma energy by increasing radiation and to a loss of density control. This was attributed to a reduction of the impurity diffusion coefficient with density. After installation of island divertor modules, a transition from normal confinement into the high-density H-mode (HDH) at a certain power-dependent threshold density appeared. This transition is characterized by a strong reduction of the impurity confinement time and an increase in energy confinement time. In the HDH operational regime, access to even higher densities (4 × 1020 m-3) than achieved before became possible under stationary operation conditions. Impurity transport measurements and model predictions indicate that the reduction of the impurity confinement in HDH is caused by not only a reduction of the inward convection in the core plasma but also possibly by changes in the edge transport. Comparison of experimental data with an axisymmetric transport model should elucidate the role of stellarator-specific transport aspects.