ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Joachim E. Geiger, Arthur Weller, Michael C. Zarnstorff, Carolin Nührenberg, Andreas Horst Franz Werner, Yaroslav I. Kolesnichenko, W7-AS Team, Neutral Beam Injection Group
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 13-23
Technical Paper | Stellarators | doi.org/10.13182/FST04-A536
Articles are hosted by Taylor and Francis Online.
One of the major goals for Wendelstein 7-AS (W7-AS) was the testing of the theoretical basis for the optimized configuration of Wendelstein 7-X (W7-X), currently under construction in Greifswald, Germany. In the last experimental campaign of W7-AS, volume-averaged values >3% have been achieved. The underlying experimental changes leading to these results are briefly reviewed. The equilibrium characteristics expected from magnetohydrodynamic (MHD) theory are modeled in a simplified picture and compared with three-dimensional equilibrium calculations. A wide range of parameters has been covered in the experiments with and without net toroidal currents. Experimental data are compared with free-boundary equilibrium calculations and exhibit good agreement. The high- equilibria usually showed only small MHD activity. The most prominent activities are low-frequency pressure-driven modes connected with low-order rationals also expected from numerical calculations using the CAS3D code, and Alfvén modes driven by energetic particles from the tangential neutral beam injection. Comparison of experimentally measured frequencies and mode structures from soft-X-ray tomography with theoretical predictions also shows the improving understanding of these modes in stellarators. The agreement of experiment and theory gives confidence in the predictions for W7-X.