ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Gerald Kamelander, Geert Weimann, Luca Garzotti, Xavier Litaudon, Didier Moreau, Bernard Pégourié
Fusion Science and Technology | Volume 45 | Number 4 | June 2004 | Pages 558-566
Technical Paper | doi.org/10.13182/FST04-A530
Articles are hosted by Taylor and Francis Online.
The paper reports on simulation of pellet-fueled plasmas in a fusion reactor. The simulations have been performed by means of the ASTRA transport code. We have studied physical modeling of pellet injection as well as the numerical conditions to resolve pellet injection correctly. As a first step the essential mechanisms for density control have been studied based on simplified assumptions with a generic source of additional heating. The experience gained has been used to simulate advanced scenarios including internal transport barriers. It has been confirmed that it is possible to drive the plasma of a next-generation tokamak into a high-Q regime and to maintain it in a steady-state regime. Nevertheless, the pellet injection parameters required are rather demanding and imply a significant technological improvement of pellet injectors. Those investigations represent an improvement of simulations done earlier with a control of the central density at constant profile.