ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
J. A. Hoekzema
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 211-216
Technical Paper | Plasma and Fusion Energy Physics - Plasma Heating and Current Drive | doi.org/10.13182/FST04-A485
Articles are hosted by Taylor and Francis Online.
An introduction is given to plasma heating and current drive with electromagnetic waves in the electron cyclotron range of frequencies, with emphasis on application in tokamak plasmas. Propagation and absorption of these waves is generally well described by linear theory, a short overview of which is given. Electron cyclotron absorption is limited to regions of the plasma where the gyromotion of electrons is in resonance with the wave frequency and can be well localised, even in smaller experiments. Apart from being able to provide global heating and non-inductive current drive, ECRH and ECCD are therefore important tools to study and manipulate locally instabilities in the plasma which are electron temperature gradient or current driven. Important potential control applications in a reactor grade plasma include mode stabilisation to prevent disruptions, transport manipulation (e.g. to maintain burn) and correction of the bootstrap current profile. The use of EC waves in major tokamak experiments has in the past been restricted due to the lack of suitable sources. These sources are, however, now rapidly becoming available.