ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Roman Rozenblat, Egemen Kolemen, Florian M. Laggner, Christopher Freeman, Greg Tchilinguirian, Paul Sichta, Gretchen Zimmer
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 835-840
Technical Paper | doi.org/10.1080/15361055.2019.1658037
Articles are hosted by Taylor and Francis Online.
The Thomson scattering (TS) diagnostic on the National Spherical Tokamak eXperiment Upgrade (NSTX-U) has been an essential system for many operational campaigns due to its function of measuring plasma electron density and temperature. Constructive feedback to improve the next plasma discharge, however, has been limited because of in-between shots analysis. Plasma control, therefore, desires a diagnostic system that is real-time capable. This contribution presents the development of software that demonstrates the feasibility of a real-time TS diagnostic system for NSTX-U. The developed software is able to evaluate the electron temperature and density within 2.5 ms.
The overall system requirement is specified by a 60-Hz timing cycle, which is driven by the TS laser pulse rate. The real-time software processes the peak amplitudes of the detected photons, evaluates the electron temperature and density, and then outputs them to an analog output card that is used to interface with the NSTX-U control. The real-time software is implemented in an object-oriented architecture using C++11. C++11 software components include Abstract class, Atomic data types for synchronization, and a Hash data structure. The software application makes use of multiple threads that run concurrently: a thread to acquire the photon peak amplitude and feed a circular buffer, threads to evaluate the electron density and temperatures, and a thread that supplies corresponding output voltages and feeds the output card.
In summary, the new real-time TS system has been proven to meet the 60-Hz system requirement. For this reason, the software implementation was deemed successful. In future NSTX-U campaigns, this diagnostic will be a great asset enabling real-time plasma density and temperature control.