ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Robert C. Cook, Mitchell Anthamatten, Stephan A. Letts, Abbas Nikroo, Donald G. Czechowicz
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 148-156
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A442
Articles are hosted by Taylor and Francis Online.
One approach to improving the quality of the DT ice layer on the inside of a NIF capsule target is to enhance the natural -layering process by heating the ice with infrared light (IR) tuned to a D2 or DT excitation band. However to do this the IR must pass through the capsule wall, and absorption by the capsule material results in heat generation that is deleterious both in terms of reducing the energy input to the ice as well as increasing the difficulty of symmetrically cooling the capsule. In order to optimize the choice of wavelength we have measured the wavelength dependent transmission properties of IR through the plastic materials we are considering for capsule fabrication. We will present wavelength dependent extinction coefficient data for normal and fully deuterated plasma polymer and vapor deposited polyimide.