ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
David J. Alexander, Jason C. Cooley, Dan J. Thoma, Arthur Nobile, Jr.
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 137-143
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A440
Articles are hosted by Taylor and Francis Online.
Beryllium doped with 6 weight % copper is the material of choice for fabrication of target capsules for the National Ignition Facility because of its combination of attractive neutronic, electronic, physical, and mechanical properties. The target capsules are 2 mm in diameter and thin-walled (150 microns) and must meet demanding dimensional specifications. The material must be fine-grained and of low inclusion content. Arc-melted Be-Cu is being produced to eliminate the oxide content that is inevitably present in conventional powdermetallurgy materials. Equal channel angular extrusion (ECAE) is being used to refine the as-cast grain structure. Be-Cu rods produced by the arc-melting process (5 mm in diameter by 30 mm in length) are enclosed in nickel cans with electron-beam welded plugs. The Be-in-Ni billets (9.5 mm in diameter by 45 mm in length) have been processed by ECAE at temperatures from 500 to 750°C in tooling with a 120° angle. Selected samples have been annealed for 1 hour at temperatures from 700 to 775°C. The ECAE processing creates a heavily deformed and finely subdivided structure, and the annealing can produce an equiaxed microstructure with a grain size of approximately 20 m.