American Nuclear Society

Home / Publications / Journals / Fusion Science and Technology / Volume 45 / Number 2

Production and Metrology of Cylindrical Inertial Confinement Fusion Targets with Sinusoidal Perturbations

M. M. Balkey, R. D. Day, S. H. Batha, N. E. Elliot, T. Pierce, D. L. Sandoval, K. P. Garrard, A. Sohn

Fusion Science and Technology / Volume 45 / Number 2 / March 2004 / Pages 107-112

Technical Paper / Target Fabrication /

Shock waves generated during inertial confinement fusion implosions propagate toward the center of the capsule encountering interfaces between materials with different densities, such as between the ablator and the DT fuel. These interactions are hydrodynamically unstable and the resulting instability causes mixing of the materials at the interface, which is predicted to have detrimental effects on fusion burn. In this experiment, the growth of a single-mode perturbation machined into a radiographically opaque marker layer, driven by a strong shock, is measured during a cylindrically symmetric implosion. These measurements are used to validate simulations and theories of the complex hydrodynamics. Since any perturbation on the marker layer surface will lead to instability growth, precise knowledge of the initial conditions is critical. The targets used in this experiment have up to a 3.0-m-amplitude, mode 28 ( = 98 m) sinusoidal perturbation machined into a 438-m-outerradius aluminum band with a nominal thickness of 8 m. The perturbations were machined using a fast-tool servo  [B. JARED and T. A. DOW, Precision Engineering Center Annual Report, North Carolina State University, Raleigh NC, p. 123 (1996)] and were metrologized using a linear variable differential transformer [FRANK J. OLIVER, Practical Instrumentation Tranducers, p. 42-45, Hayden Book Company (1971)]. In this paper, the importance of metrology is discussed and is shown to be critical to the interpretation of experimental results.

Questions or comments about the site? Contact the ANS Webmaster.