ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
M. M. Balkey, R. D. Day, S. H. Batha, N. E. Elliot, T. Pierce, D. L. Sandoval, K. P. Garrard, A. Sohn
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 107-112
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A435
Articles are hosted by Taylor and Francis Online.
Shock waves generated during inertial confinement fusion implosions propagate toward the center of the capsule encountering interfaces between materials with different densities, such as between the ablator and the DT fuel. These interactions are hydrodynamically unstable and the resulting instability causes mixing of the materials at the interface, which is predicted to have detrimental effects on fusion burn. In this experiment, the growth of a single-mode perturbation machined into a radiographically opaque marker layer, driven by a strong shock, is measured during a cylindrically symmetric implosion. These measurements are used to validate simulations and theories of the complex hydrodynamics. Since any perturbation on the marker layer surface will lead to instability growth, precise knowledge of the initial conditions is critical. The targets used in this experiment have up to a 3.0-m-amplitude, mode 28 ( = 98 m) sinusoidal perturbation machined into a 438-m-outerradius aluminum band with a nominal thickness of 8 m. The perturbations were machined using a fast-tool servo [B. JARED and T. A. DOW, Precision Engineering Center Annual Report, North Carolina State University, Raleigh NC, p. 123 (1996)] and were metrologized using a linear variable differential transformer [FRANK J. OLIVER, Practical Instrumentation Tranducers, p. 42-45, Hayden Book Company (1971)]. In this paper, the importance of metrology is discussed and is shown to be critical to the interpretation of experimental results.