ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Tadaaki Nemoto, Motoo Ishikawa, Yasuyoshi Yasaka
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 309-311
Field Reversed Configuration and Neutron Sources | doi.org/10.13182/FST03-A11963621
Articles are hosted by Taylor and Francis Online.
The separation capability of the charged particles is one of the most important requirements for direct energy converters (DEC) of D-3He fusion reactors. Yasaka, one of the authors, has demonstrated the principle of the Cusp DEC on a small-scale experimental device. Analyses of the device with a two-dimensional approximation and comparison with the experimental results give the following results. (1) The input power of plasma beam is estimated as P = 2W × E1.5, compared with the experimental results, where E is the ion energy and normalized with 0.1keV. (2) The current at point cusp tends to saturate as the ion energy increases as the experimental results show. (3) Ion current at point cusp depends on the shape of the magnetic field more strongly than its strength.