Hot electrons have been created in the plug section of the Hanbit tandem mirror in order to allow a test of high-in ballooning stability provided by a high-β hot-electron plasma in a tandem mirror. A rectangular microwave cavity was built to confine the energy from a 2-kW 14-GHz klystron. The cavity was equipped with a diamagnetic loop, a skimmer probe, and bremsstrahlung windows. An end-loss probe has been added in the cusp section in order to study the hot-electron mirror losses from the plug. The end-loss probe contains a Silicon PIN diode that is used to detect the x-rays from fast electrons striking a tantalum radiator. The end-loss probe was scanned radially to determine the radius and radial width of the hot-electron distribution ring for two different magnetic fields. A clear ring is observed for both magnetic fields. Bremsstrahlung measurements have shown the presence of a hot-electron plasma in the plug with an electron temperature in the range of 60 to 120 keV. The temperature with the optimum magnetic field is ~ 100 keV. Diamagnetic measurements give the total stored energy. Stored-energy measurements combined with the radial dimensions determined by the end-loss detector were used to give the value of beta with assumptions on the plasma length. The average beta value is much less than 1% due to the low power and short heating time.