A tritium-breeding blanket design is investigated for a D-T Field-Reversed Configuration (FRC) scoping study. The thrust of our initial effort on the blanket has been to seek solutions as close to present-day technology as possible, and we have therefore focused on steel structure with helium coolant. The simple FRC cylindrical geometry has allowed us reasonable success due to the low FRC magnetic field and relatively easy maintenance. In this design the breeder is Li2O tubes. The design is modular with 10 modules each 2.5 m long. The inner radius of the first wall is 2.0 m and the FW/blanket/shield thickness is about 2 m. The surface heat flux will be radiation dominated, fairly uniform, and relatively low, because most of the charged particles follow the magnetic flux tubes to the end walls. The neutron wall loading is 5 MW/m2. In this design the surface heat flux equals 0.19 MW/m2. The maximum Li2O tube temperature is 1003°C. The helium exit temperature from the heat exchanger is about 800°C which allows a thermal efficiency of about 52%. The local tritium breeding ratio (TBR) equals 1.1 and is sufficient because in the FRC geometry the plasma has nearly full coverage. The helium pumping power is 1 MW. The coolant routing is optimized to limit the steel maximum temperature to 635°C. The same concept would be applicable to a spherical torus and spheromak.