ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
C. H. Skinner, C. A. Gentile, L. Ciebiera, S. Langish
Fusion Science and Technology | Volume 45 | Number 1 | January 2004 | Pages 11-14
Technical Paper | doi.org/10.13182/FST04-A420
Articles are hosted by Taylor and Francis Online.
Tritiated particles have been observed to spontaneously levitate under the influence of a static electric field. Tritium-containing codeposits were mechanically scraped from tiles that had been used in the Tokamak Fusion Test Reactor (TFTR) inner limiter during the deuterium-tritium campaign and were placed in a glass vial. On rubbing the plastic cap of the vial, a remarkable "fountain" of particles was seen inside the vial. Particles from an unused tile or from a TFTR codeposit that formed during deuterium discharges did not exhibit this phenomenon. It appears that tritiated particles are more mobile than other particles, and this should be considered in assessing tokamak accident scenarios and in occupational safety.