ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
NRC grants Clinton and Dresden license renewals
Three commercial power reactors across two Illinois nuclear power plants—Constellation’s Clinton and Dresden—have had their licenses renewed for 20 more years by the Nuclear Regulatory Commission.
D. N. Bittner, G. W. Collins, J. D. Sater
Fusion Science and Technology | Volume 44 | Number 4 | December 2003 | Pages 749-755
Technical Paper | doi.org/10.13182/FST03-A412
Articles are hosted by Taylor and Francis Online.
Cryogenic targets for the National Ignition Facility require uniform solid layers inside spherical capsules at temperatures ~1.5 K below the triple point of hydrogen. Uniform layers have been successfully formed near the triple point. However, upon subsequent cooling the layers degrade. We report here recent attempts to form uniform deuterium hydride (HD) layers 1.5 K below the triple point using infrared (IR) radiation. Pumping the IR collisionally induced vibration-rotation band of solid HD contained inside a transparent plastic shell generates a volumetric heat source in the HD lattice. This in turn allows the formation of a spherical crystalline shell of HD inside the transparent plastic shell. HD layers ~50 m thick have been formed near the triple point and slowly cooled 1.5 K under high IR power without layer degradation.