ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Yuki Edao, Satoshi Fukada, Hidetaka Noguchi, Akio Sagara
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 140-151
Technical Paper | doi.org/10.13182/FST09-A4067
Articles are hosted by Taylor and Francis Online.
The rate of tritium released from temperature-controlled Flibe (a mixed molten salt of 2LiF + BeF2) after neutron irradiation was determined comparatively under two different conditions of Ar-H2 (10%) or Ar gas purge at a constant or linearly elevated temperature. Experimental rates of tritium release were analyzed based on its diffusion in Flibe and isotopic exchange between T atoms on surfaces and H atoms included in gaseous components. Gas released from Flibe had compositions of various ratios of HT to TF depending on the different conditions of Ar-H2 or Ar purge gas. The major molecular species of tritium released from Flibe after neutron irradiation was HT under the condition of the Ar-H2 purge and 300°C. The rate of tritium release under the Ar-H2 purge was simulated well by the present analytical model. Although its chemical form immediately after the release was TF under the condition of Ar purge, it was changed to HT partly by interaction with metallic surfaces.