ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
V. Erckmann; W. Kasparek; G. Gantenbein; F. Hollmann; L. Jonitz; F. Noke; F. Purps; M. Weissgerber; W7-X ECRH Teams at IPP Greifswald, FZK Karlsruhe, IPF Stuttgart
Fusion Science and Technology | Volume 55 | Number 1 | January 2009 | Pages 16-22
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | doi.org/10.13182/FST09-A4049
Articles are hosted by Taylor and Francis Online.
Electron cyclotron resonance heating (ECRH) is the main heating system for W7-X. A 10-MW ECRH plant with continuous wave (cw) capability is under construction to support the W7-X operation, which aims at demonstrating the steady-state capability of stellarators at reactor-relevant plasma parameters. The ECRH system consists of ten radio-frequency (rf) modules with 1 MW power each at 140 GHz. The rf beams of the individual gyrotrons are transmitted in common to the W7-X torus via open multibeam mirror lines. The losses of individual components of the transmission system were measured with both low- and high-power methods. Integrated full-power, cw measurements of the long-distance transmission losses are reported and compared to theoretical design estimates.