ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Thomas Hladschik, Klaus Schoepf
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 588-592
Plasma Heating and Current Drive, Plasma Engineering | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40221
Articles are hosted by Taylor and Francis Online.
In ITER the main loss mechanism of fast fusion alpha particles is expected to be due to toroidal field (TF) ripples caused by the finite number of TF coils. The associated radial diffusion of fast alphas is specified by an energy and space dependent diffusion coefficient which can be extended to account also for toroidal Alfven eigenmode (TAE) diffusion. Energy transfer from the fast alphas to the thermal background plasma is considered to occur due to Coulomb collisions and nuclear elastic scattering (NES). The α-transport is described here by a reduced slowing down kinetic equation of which the numerical solution provides for the energy-, space- and time-dependent alpha particle distribution in the tokamak plasma. This alpha distribution then constitutes the basis for a determinative calculation of the actual fusion power allocation to each distinct background species. Though TAE diffusion alone is not a significant fusion power loss mechanism, our recent calculations indicate that the coaction of TF-ripple (TFR) and TAE transport processes synergisticly results in a substantial reduction of fusion alpha power deposition.