An upgrade of the MAGFIRE code used to model the vapor shield (VS) effect was needed to include: higher disruption heat fluxes of interest to ITER, a comparison of carbon to beryllium erosion depths and the effects of ion/electron beam charge separation in the VS. Results show that higher heat fluxes give a lower total energy transmission factor (f) as expected. Beryllium divertor plates have much higher erosion depths than do carbon as well as a higher f. Charge separation has a small effect on the VS stopping power for electrons and on the distribution of deposited energy in the VS. However, the effect will be more important as the disruption particle energy increases.