Target design, fabrication and handling are central to the design of a Laboratory Microfusion Facility (LMF). Both direct and indirect drive target designs are being considered. This paper will address the target issues for the LMF concept, for the case of direct drive targets. Current direct-drive designs call for uniform liquid DT layers to be contained in a low density hydrocarbon foam shell at 20–25°K, or uniform solid DT layers to be created on the interior of a solid shell at about 19°K. A conceptual plan for LMF target fabrication is presented which addresses many of the issues raised by this new generation of ICF targets. Since these targets will require a cryogenic environment until they are imploded, solutions to a number of problems including temperature stability, fill methods for various target designs, tritium supply, target transport, and target alignment must be integrated into a single cryogenic system which maintains the target over its lifetime. The simultaneous solution of all these issues will require a complex facility capable of integrating technologies ranging from foam chemistry to novel cryogenics. This paper outlines the requirements on such a facility as well as many solutions under consideration.