ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
W. A. Houlberg
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 518-521
Technical Paper | Fusion Energy - Plasma Engineering, Heating, and Current Drive | doi.org/10.13182/FST03-A389
Articles are hosted by Taylor and Francis Online.
The transport and net loss of cyclotron radiation for burning plasmas represented by the ITER, FIRE and IGNITOR designs are assessed using the CYTRAN radiation transport code. Although cyclotron radiation might be expected to be a bigger issue in the higher field devices (FIRE and IGNITOR), the reference operating conditions in those devices are at lower temperatures so that the relative importance is nearly constant for all three. At the reference operating conditions for each of these devices, the net energy loss from cyclotron radiation is about 10% of the alpha power, and the axial loss is typically about 15% of the local alpha power density. If the same fusion power is generated at higher temperature and lower density than the reference operating points (as may be the case in advanced confinement modes), both the net and axial loss fractions strongly increase and are more competitive with other energy transport processes. The increase is much stronger for the high field devices where the axial loss can approach the local alpha energy production rate for T(0) ~ 30 keV. However, if the temperature increases at constant density (as in a thermal excursion), cyclotron radiation loss remains an almost constant fraction of the alpha production rate. This implies that it will not make a significant contribution to thermal stabilization. However, these and other calculations of cyclotron radiation transport are sensitive to assumptions of reflection, plasma geometry and profile shapes. Therefore, the effect of cyclotron radiation on operating conditions and burn dynamics will undoubtedly be a generic issue that any burning plasma will have to address.