ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
O. Kaneko, T. Yamamoto, M. Akiba, M. Hanada, K. Ikeda, T. Inoue, K. Nagaoka, Y. Oka, M. Osakabe, Y. Takeiri, K. Tsumori, N. Umeda, K. Watanabe
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 503-507
Technical Paper | Fusion Energy - Plasma Engineering, Heating, and Current Drive | doi.org/10.13182/FST03-A386
Articles are hosted by Taylor and Francis Online.
Two pilot facilities of advanced negative-ion-based neutral beam injection heating system have been working successfully on the JT-60U tokamak and the LHD heliotron in Japan. These were the first applications of negative-ion technology to the production of high current neutral beam for plasma heating as well as current drive. High energy deuterium beam of 400 keV (5.8 MW) was injected in JT-60U for efficient current drive, and high power hydrogen beam of 9.0 MW (160 keV) was injected in LHD producing high performance plasmas. These results demonstrate the feasibility of negative ion beam system for future fusion reactors such as ITER.