American Nuclear Society

Home / Publications / Journals / Fusion Science and Technology / Volume 70 / Number 1

Catalyzed D-D Stellarator Reactor

John Sheffield, Donald A. Spong

Fusion Science and Technology / Volume 70 / Number 1 / July 2016 / Pages 36-53

Technical Paper /

First Online Publication:May 12, 2016
Updated:June 30, 2016

The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusion program. It is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/<a> ≈ 4, required improvement factor to ISS04 scaling, FR = 0.9 to 1.15, <β> ≈ 8.0% to 11.5%, Zeff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, Bm ≈ 14 to 16 T, and R ≈ 18 to 24 m.

Questions or comments about the site? Contact the ANS Webmaster.