ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
R. Sugano, K. Morishita, A. Kimura
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 446-449
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A375
Articles are hosted by Taylor and Francis Online.
Helium desorption from Fe-based model alloys irradiated by energetic helium ions was measured during post-irradiation annealing to investigate the energetics and kinetics of formation and annihilation of helium-related defects. Desorption temperatures were observed to be widely ranged from 450 to 1500 K, indicating that helium is bound to a wide variety of trapping sites such as vacancies and dislocations at various binding states. Such a feature is also observed in fusion ferritic steel. A comparison of helium desorption spectra obtained using Fe, Fe-Cr and Fe-Cr-Ni alloys showed that helium is more strongly trapped in bcc Fe than fcc Fe. It indicates that the long distance migration of helium takes place less frequently in bcc matrix, which may reduce the probability of helium clustering. Fusion ferric steel has a lot of trapping sites for helium such as dislocations, solute atoms, the interface of precipitates, impurities and lath boundaries, and so on, and in addition, it has bct matrix, indicating that most of helium atoms must be dispersed in the matrix and therefore it is difficult for them to cluster as a bubble. This may be a reason for higher helium resistance of the steel.