ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Kazunori Morishita, Ryuichiro Sugano, Brian D. Wirth
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 441-445
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A374
Articles are hosted by Taylor and Francis Online.
The recent progress on our multiscale modeling to understand radiation damage processes in materials during irradiation is reviewed. The energies of He-V cluster formation in Fe were evaluated using a molecular dynamics (MD) simulation technique that employed interatomic potentials partially developed by first-principle (FP) calculations. Using the calculated energies, the longer timescale behavior of He-V clusters in Fe was investigated using a kinetic Monte-Carlo (KMC) simulation technique. The FP-MD-KMC scheme provided us significant information on the thermal stability of a He-V cluster in Fe as a function of the helium-to-vacancy ratio of the cluster.