ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
K. Takahashi, K. Kajiwara, Y. Oda, K. Sakamoto, T. Omori, M. Henderson
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 718-731
Technical Paper | doi.org/10.13182/FST14-830
Articles are hosted by Taylor and Francis Online.
Development of an electron cyclotron equatorial launcher has proceeded with a series of prototype tests and design enhancements intended to improve reliability and functionality of the launcher. The design enhancements include adaptation of the launcher steering angles such that one of three beam rows of the launcher is necessarily flipped to perform counter current drive to conform to a new ITER physics requirement. Also, the top and bottom steering rows have been tilted at an angle of 5 deg so that the top and bottom beam rows can be accessed from on-axis to near midradius. Furthermore, the position of the fixed focusing mirror that forms a quasi-optical in-vessel millimeter-wave (mm-wave) transmission line is modified to increase the nuclear shielding capability. A high-power experiment of the mm-wave launching system mock-up fabricated based on the design confirmed a successful steering capability of 20 to 40 deg. It was measured that some stray radio-frequency power propagated in the beam duct and generated some heat on the duct. Prototype tests also include the fabrication of the blanket shield module and partial port plug mock-up and have shown no serious technological issue regarding the fabrication and cooling functionality.