American Nuclear Society

Home / Publications / Journals / Fusion Science and Technology / Volume 38 / Number 3

Erosion and Deuterium Retention Investigation of Mixed W-Be Layers on Beryllium in Experiments on Plasma Disruption Simulation

S.N. Korshunov, V.I. Vasiliev, M.I. Guseva, V.M. Gureev, L.S. Danelyan, V.V. Zatekin, V.S. Kulikauskas

Fusion Science and Technology / Volume 38 / Number 3 / November 2000 / Pages 357-362

Technical Paper / Special Issue on Beryllium Technology for Fusion /

The mixed W-Be layers were prepared by deposition of Be and W atoms on a Be substrate under simultaneous sputtering of Be and W targets by 20 keV Ar+-ions. The thickness of the deposited mixed W-Be layer was ∼500 nm. The element composition analysis of these layers showed that the mixed layer contains up to 35 at.% W, up to 35 at.% Be and up to 30 at.% O. The W-Be films on Be were irradiated by pulsed deuterium plasma flux in the electrodynamic plasma MKT-accelerator with a deuterium plasma concentration of 1021 m−3, maximal ion energy of (1–2) keV and with the energy flux density of 0.2 MJ/m2 per pulse. The pulse duration was equal to 60 μs. After irradiation by two plasma pulses the W-Be film is melted and removed completely from the local surface areas. The element distributions in a mixed layer after an effect of the pulsed plasma are essentially changed. For the surface areas with the removed film the Be concentration is about 75 at.%, W — about 15 at.%, O - about 10 at.% and the penetration of W and O atoms is up to 1000 nm deep of Be substrate. For the surface areas with the retained melted film the Be surface concentration increase up to 90 at.%, tungsten and oxygen concentration decrease about 2–3 times. The method of Elastic Recoil Detection Analysis was used to study D retention. The integral deuterium concentrations are equal to 0.6·1020 and 2.2·1020 m−2 for the removed film areas and for the retained melted film ones, correspondingly. Consequently, deposited W-Be film promotes the essential reduction of D retention in Be substrate. Transmission electron microscopy was used to study the erosion product size distribution. The erosion products were collected on basalt filter fibers located in a shadow of the pulsed plasma flux around the exposed WBe film target. The erosion product size distribution has two maxima located in the ranges 0.1–0.2 μm and 2.5–5.0 μm.

Questions or comments about the site? Contact the ANS Webmaster.