American Nuclear Society

Home / Publications / Journals / Fusion Science and Technology / Volume 38 / Number 1

Quantitative Analysis of Backlit Shadowgraphy as a Diagnostic of Hydrogen Ice Surface Quality in ICF Capsules

J. A. Koch, T. P. Bernat, G. W. Collins, B. A. Hammel, B. J. Kozioziemski, A. J. MacKinnon, J. D. Sater, D. N. Bittner, Y. Lee

Fusion Science and Technology / Volume 38 / Number 1 / July 2000 / Pages 123-131

Technical Paper / Thirteenth Target Fabrication Specialists’ Meeting /

We have developed a numerical raytrace model, SHELL3D, which simulates the backlit imaging of cryogenic inertial-confinement fusion (ICF) ignition capsules in three dimensions. We have used this model to investigate the limitations of backlit shadowgraphy as a diagnostic of hydrogen ice surface quality inside the capsules. We impose known modal perturbations upon the simulated inner ice surface, and produce simulated shadowgraphs which are then analyzed as if they were real experimental data. We find that power spectra derived from backlit shadowgraphs appear to be reliable indicators of ice surface power spectra out to Fourier mode numbers as high as 80. We also suggest that some advantages may be obtained by using a collimated backlight, and possibly by utilizing backlit transmission interferometry. These results support the conclusion that backlit shadowgraphy is a valid quantitative diagnostic of lower-mode ice surface imperfections inside transparent spherical ICF shells.

Questions or comments about the site? Contact the ANS Webmaster.