ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Robert Cook
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 74-82
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST00-A36120
Articles are hosted by Taylor and Francis Online.
Model calculations have been performed to provide guidance for the development of solution spray techniques for coating NIF scale mandrels with 150 μm thick polyimide ablator layers. The deposition models considered assume independent random placement of the spray droplets on the mandrel surface followed by their spreading to form thin disk-like additions. The dependence on the final surface roughness of the effective thickness of the addition, the size (diameter) of the addition, and the cross-sectional profile of the addition have been explored. In addition, a model that assumes randomly placed, independent additions that cover 50% of the mandrel surface per addition is considered For each model and parameter set the rms surface finish is calculated as well as the surface power spectra. The primary result is that individual, randomly placed coating additions must be very thin, on the order of a few nm at most, if NIF surface specifications are to be met.