ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Kenneth V. Salazar, Stevan G. Pattillo, Mitchell Trkula
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 69-73
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST00-A36119
Articles are hosted by Taylor and Francis Online.
Capsules with beryllium ablators are very important targets for the DOE National Ignition Facility (NIF) laser in the Inertial Confinement Fusion Program. Two leading candidates for fabricating beryllium capsules are the machining and bonding of hemispheres, and physical vapor deposition of beryllium onto plastic or other shells. An attractive possibility would be to coat a spherical mandrel with a thin layer of beryllium by a non-line-of-sight process. This coating could be applied via the chemical vapor deposition (CVD) of beryllium. Our first attempt at coating beryllium via CVD was done by using bis(cyclopentadienyl)beryllium, (C5H5)2Be, as the precursor material. Results obtained by use of (C5H5)2Be as the precursor material is discussed. However, difficulties we encountered with use of the (C5H5)2Be precursor material led us to examine a relatively unexplored area of beryllium chemistry, namely that of its amines. This redirection also led us to change surrogate material for use in the developmental work.