ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Kenneth V. Salazar, Stevan G. Pattillo, Mitchell Trkula
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 69-73
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST00-A36119
Articles are hosted by Taylor and Francis Online.
Capsules with beryllium ablators are very important targets for the DOE National Ignition Facility (NIF) laser in the Inertial Confinement Fusion Program. Two leading candidates for fabricating beryllium capsules are the machining and bonding of hemispheres, and physical vapor deposition of beryllium onto plastic or other shells. An attractive possibility would be to coat a spherical mandrel with a thin layer of beryllium by a non-line-of-sight process. This coating could be applied via the chemical vapor deposition (CVD) of beryllium. Our first attempt at coating beryllium via CVD was done by using bis(cyclopentadienyl)beryllium, (C5H5)2Be, as the precursor material. Results obtained by use of (C5H5)2Be as the precursor material is discussed. However, difficulties we encountered with use of the (C5H5)2Be precursor material led us to examine a relatively unexplored area of beryllium chemistry, namely that of its amines. This redirection also led us to change surrogate material for use in the developmental work.