ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Masaru Takagi, Robert Cook, Richard Stephens, Jane Gibson, Sally Paguio
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 54-57
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST00-A36116
Articles are hosted by Taylor and Francis Online.
Poly(α-methylstyrene) (PαMS) mandrel precursors (a PαMS containing fluorobenzene solution surrounding a water core) are suspended in a salt-containing water solution during curing. The salt is necessary to suppress the growth of water drops in the curing oil phase (resulting in vacuoles in the dried mandrel). However the use of salts in this manner results in a chemical potential difference between the inner pure water droplets and the outer bath. This results in a loss of water from the inner water phase, shrinking the mandrel as it cures and potentially wrinkling its surface. We have quantified the degree of mandrel shrinkage and expansion as a function of the difference in salt concentration. Expansion is not proportional to concentration difference. It does not appear that osmotically driven expansion removes wrinkles; the large wrinkle amplitudes were seen with all salt concentrations.