American Nuclear Society

Home / Publications / Journals / Fusion Science and Technology / Volume 65 / Number 2

Preparation and Characterization of the Lithium Metatitanate Ceramics by Solution-Combustion Method for Indian LLCB TBM

A. Shrivastava, M. Makwana, P. Chaudhuri, E. Rajendrakumar

Fusion Science and Technology / Volume 65 / Number 2 / March 2014 / Pages 319-324

Technical Paper /

In fusion DEMO reactors, the blanket requires lithium-containing ceramics as the tritium breeder material. Lithium metatitanate (Li2TiO3) is being considered as a promising tritium breeding material for thermonuclear fusion reactors because of its reasonable lithium atom density, prominent tritium release rate at low temperatures, low activation characteristics, low thermal expansion coefficient, high thermal conductivity, etc. Li2TiO3 will be used in the Indian Lead-Lithium–Cooled Ceramic Breeder concept to be tested in ITER. Li2TiO3 powder has been synthesized by the solution-combustion technique using a less expensive precursor of titanium, i.e., titanium dioxide (TiO2), at Institute for Plasma Research. Titanium oxynitrate [TiO(NO3)2] and lithium carbonate (Li2CO3) with citric acid fuel are used as the raw materials. The combustion reaction was carried out at citrate-to-metal ratios of 0.8 to 1.5, as well as for various pH values ranging from 1 to 5. Citric acid was used as a fuel material for the reaction. Calcination of the powder was carried out at 600°C. The powders were characterized for phase purity, grain size, and surface area using X-ray diffraction, scanning electron microscopy, and a Brunauer-Emmett-Teller surface area analyzer. Finally, Li2TiO3 pebbles were prepared by extrusion followed by spheronization with a diameter range from 1 to 1.5 mm. The details of the powder systemization, pebble formation, and their various characterizations are discussed in this paper.

Questions or comments about the site? Contact the ANS Webmaster.