ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
A. Abhishek, M. Warrier, E. Rajendra Kumar
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 222-228
Technical Paper | doi.org/10.13182/FST13-655
Articles are hosted by Taylor and Francis Online.
Understanding helium transport and clustering is important for full understanding of fusion material degradation due to neutron irradiation. Molecular dynamics simulations are carried out to study the clustering of He in FeCr alloy. The simulations are performed for He fractions from 0.1 to 0.4 in FeCr alloy at temperatures ranging from 300 to 800 K. It is observed that a minimum of five He atoms is required to form a stable cluster at temperatures in the range 700 to 800 K. An He5-(Fe/Cr)2-V2 complex is found to exist at 300 K. At higher temperatures, the cluster displaces the Fe and Cr atoms from their lattice sites, forming an He5-V complex. The constituent element of the displaced material is then found to migrate inside the system, depending upon the conditions prevailing there.