ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
C. Rotti, N. Panda, H. Patel, N. Kanoongo, A. Chakraborty, K. Balasubramanian
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 205-211
Technical Paper | doi.org/10.13182/FST13-669
Articles are hosted by Taylor and Francis Online.
In high heat flux components of neutral beam injector (NBI) systems, CuCrZr alloy is used as a heat sink material. In different national standards, chromium content varies from 0.4 to 1.5 wt%, and zirconium content varies from 0.03 to 0.25 wt%. Indian CuCrZr material was produced at the Non-Ferrous Materials Technology Development Centre and used for the NBI system of the Indian tokomak SST-1, which complied with these chemical composition ranges. The properties of the Indian CuCrZr material were in accordance with procurement specifications. CuCrZr ITER-grade (IG) specifications are as defined in “ITER Materials Properties Handbook” (MPH). The MPH recommends a narrower range of Cr and Zr contents. The reason for limiting the Cr content is that a high Cr content may result in the formation of coarse Cr precipitates, which affect the radiation resistance. Indian CuCrZr with ITER specifications has been produced in a large number (38) of heats and characterized for compositional, tensile, grain size, and weld properties. The properties are, in general, found to comply with those of ITER specifications. The material-processing and component-making steps have been determined, and prototypes of heat transfer elements have been made. Residual ion dump plates have been successfully deep drilled, and component welding trials are in progress. This paper discusses experiences in producing CuCrZr IG and making the elements.