ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
A. Mukherjee, R. G. Trivedi, R. Singh, K. Rajnish, H. Machchhar, P. Ajesh, G. Suthar, D. Soni, M. Patel, K. Mohan, J. V. S. Hari, F. Kazarian, B. Beaumont, P. Lamalle, and T. Gassmann
Fusion Science and Technology | Volume 65 | Number 1 | January 2014 | Pages 120-128
Lecture | doi.org/10.13182/FST13-640
Articles are hosted by Taylor and Francis Online.
The ITER ion cyclotron heating and current drive system is designed to deliver 20 MW to a broad range of plasma scenarios, during very long pulses (∼500 s in inductive, up to 1 h in noninductive, plasma scenarios). The associated radio-frequency (rf) source system has to be compliant with all operation modes foreseen in ITER operation. India is responsible for delivering the rf source package to ITER, which includes one prototype rf source followed by eight bulk production units. This lecture presents the ITER rf source system, design considerations, and status of the research and development program to identify and resolve the major technological challenges involved.