ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
S. G. Durbin, M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 307-311
Technical Paper | Fusion Energy - Chamber Technology | doi.org/10.13182/FST03-A352
Articles are hosted by Taylor and Francis Online.
Turbulent liquid sheets have been proposed to protect solid structures in fusion power plants by absorbing damaging radiation. Establishing an experimental design database for this flow would therefore be valuable in various thick liquid protection schemes. The effect of initial conditions on the flow free-surface fluctuation was studied experimentally for vertical turbulent sheets of water issuing downwards from nozzles of thickness (small dimension) = 1 - 1.5 cm into ambient air. Sheets issuing from nozzles with both two- and three-dimensional fifth-order polynomial contractions with exit aspect ratios of 6.7 and 10 were investigated at Reynolds numbers ranging from 2 × 104 to 1 × 105. Mean velocity and turbulence intensity profiles were measured just upstream of the nozzle exit using laser-Doppler velocimetry to quantify initial conditions. Planar laser-induced fluorescence was used to visualize the free surface geometry of the liquid sheet in the near-field region up to 25 downstream of the nozzle exit. Fluctuations of the free surface, or surface ripple, are characterized by the standard deviation in the position of the gas/liquid interface.