ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
D. T. Goodin, N. B. Alexander, G. E. Besenbruch, L. C. Brown, A. Nobile, R. W. Petzoldt, W. S. Rickman, D. Schroen, B. Vermillion
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 279-283
Technical Paper | Fusion Energy - Advanced Designs | doi.org/10.13182/FST03-A347
Articles are hosted by Taylor and Francis Online.
The "Target Fabrication Facility" (TFF) of an IFE power plant must supply about 500,000 targets per day. The targets are injected into the target chamber at a rate of 5-10 Hz and tracked precisely so the driver beams can be directed to the target. The feasibility of developing successful fabrication and injection methodologies at the low cost required for energy production (about $0.25/target, about 104 less than current costs) is a critical issue for inertial fusion. To help identify major cost factors and technology development needs, we have utilized a classic chemical engineering approach to the TFF. The analyses assume an "nth-of-a-kind" TFF and utilize standard industrial engineering cost factors. The results indicate that the direct drive target can be produced for about $0.16 each. Iterations are still underway for the indirect drive target. These cost analyses assume that the process development is accomplished to allow scaling of current laboratory methods to larger sizes, while still meeting target specifications. A development program is underway at various laboratories to support this scale-up.