ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
M. Nieto, D. N. Ruzic, J. P. Allain
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 232-236
Technical Paper | Fusion Energy - Divertor and Plasma-Facing Components | doi.org/10.13182/FST03-A339
Articles are hosted by Taylor and Francis Online.
The Flowing Liquid Surface Retention Experiment (FLIRE) has been built and designed at the University of Illinois at Urbana-Champaign to provide fundamental experimental data on the retention and pumping of He, H and other species in flowing liquid surfaces. These measurements are critical to the development of advanced plasma-facing components (PFCs) that apply flowing liquid metals to mitigate high heat loads encountered in the divertor region of next-step fusion reactors. The FLIRE facility currently uses an ion beam source, which injects ions into a flowing stream of liquid lithium. Its design allows the liquid lithium to flow between two vacuum chambers that become isolated from each other when the lithium flows. Recent results show retention of helium in flowing liquid lithium at 250-300 °C to be of the order 10-4 and diffusivities of 10-4 to 10-3 cm2/sec.