ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Tomotsugu Sawai, Masami Ando, Eiichi Wakai, Kiyoyuki Shiba, Shiro Jitsukawa
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 201-205
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A334
Articles are hosted by Taylor and Francis Online.
Nickel-doped F82H alloys have been fabricated to simulate He production due to fusion neutrons in fission reactor irradiation. 1.2Ni and 1.4Ni alloys were tempered at 750°C without re-austenitisation. Expected He production in 1.4% Ni alloy irradiated in HFIR target position is about 400 appm at 40 dpa. Results of tensile and Charpy impact tests of these alloys show that their mechanical properties are similar to those of original F82H, although 0.2% proof stresses of Ni-doped alloys were 50 Mpa smaller than that of F82H. Small amount of two isotope tailored alloys including 1.4wt% Ni are also prepared using 58Ni and 60Ni. Chemical analyses and Charpy impact tests of the mock-up heat suggest that the fabrication of these small heats was successful.