ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
N. Martovetsky, J. Minervini, K. Okuno, E. Salpiero, O. Filatov
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 19-26
Technical Paper | Fusion Energy - Fusion Plenary and Overview | doi.org/10.13182/FST03-A305
Articles are hosted by Taylor and Francis Online.
Magnet technology for fusion in the last decade has been focusing mostly on the development of magnets for tokamaks - the most advanced fusion concept at the moment. The largest and the most complex tokamak under development is ITER. To demonstrate adequate design approaches to large magnets for ITER and to develop industrial capabilities, two large model coils and three insert coils, all using full-scale conductor, were built and tested by the international collaboration during 1994-2002. The status of the magnet technology and directions of future developments are discussed in this paper.