ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Bipartisan bill aims to promote nuclear fusion development
Curtis
Cantwell
Sens. Maria Cantwell (D., Wash.) and John Curtis (R., Utah) have introduced a bill that would enable nuclear fusion energy technologies to have access to the federal advanced manufacturing production tax credit.
The companion version of the bill was introduced in the House by Reps. Carol Miller (R., W.Va.), Suzan DelBene (D., Wash.), Claudia Tenney (R., N.Y.), and Don Beyer (D., Va.)
The Fusion Advanced Manufacturing Parity Act extends the federal advanced manufacturing production credit (45X) by adding a 25 percent tax credit for companies that are domestically manufacturing fusion energy components.
Valeria T. G. Riccardo, Philip L. Andrew, Alan Sandford Kaye, Peter Knoll
Fusion Science and Technology | Volume 43 | Number 4 | June 2003 | Pages 493-502
Technical Paper | doi.org/10.13182/FST03-A296
Articles are hosted by Taylor and Francis Online.
In view of the modification to the Joint European Torus (JET) plasma facing components foreseen for the 2004 shutdown, the disruption design criteria for in-vessel components have been updated building on the operational experience with divertor plasmas gained since the early 1990s. In fast disruptions the largest contribution to the electromechanical loads comes from currents induced by the poloidal field change. This is proportional to the plasma current decay rate, the maximum of which is observed to be linear with the predisruption plasma current, as if the current quench in the fastest events has a fixed duration, around 10 ms. Usually vertical displacement events (VDEs) take place on a longer timescale. In these cases halo currents determine the worst loading condition. Analysis of recent VDE data confirmed the previously observed magnitude of asymmetries: toroidal peaking factor times ratio of average poloidal halo to initial plasma current up to 0.42.Experimental evidence to justify the new criteria and procedures for applying them to JET are included. The revised design criteria are discussed and compared with those used for the components already present in the JET vessel.