ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Harold N. Barr, Fred Hittman, Robert D. Brown, Frank W. Clinard, Jr., Manuel R. Lopez, Horace Martinez, Tobias J. Romero, Jay H. Cook
Fusion Science and Technology | Volume 17 | Number 3 | May 1990 | Pages 385-390
Technical Paper | Materials Engineering | doi.org/10.13182/FST90-A29215
Articles are hosted by Taylor and Francis Online.
Ceramic-to-metal seals were prepared by sputtering a titanium metallizing layer onto ceramic disks and then brazing to metal tubes. The ceramics used were alumina, MACOR, spinel, A ION, and a mixture of Al2O3 and Si3N4, Except for the MACOR, which was brazed to a titanium tube, the ceramics were brazed to niobium tubes. The seals were leak tested and then sent to Los Alamos National Laboratory, where they were irradiated using the spallation neutron source at the Los Alamos Meson Physics Facility. Following irradiation for ∼90 days to a fluence of 3.8 × 1023 n/m2, the samples were moved to hot cells and again leak tested. Only the MACOR samples showed any measurable leaks. One set of samples was then pressurized to 6.9 MPa (1000 psi) and subsequently leak tested. No leaks were found. Bursting the seals required hydrostatic pressures of at least 34 MPa (5000 psi). The high seal strength and few leaks indicate that ceramic-to-metal seals can resist radiation-induced degradation.