American Nuclear Society

Home / Publications / Journals / Fusion Science and Technology / Volume 43 / Number 3

Cost Modeling for Fabrication of Direct Drive Inertial Fusion Energy Targets

William Samuel Rickman, Daniel T. Goodin

Fusion Science and Technology / Volume 43 / Number 3 / May 2003 / Pages 353-358

Technical Paper / Targets and Target Protection During Injection

Chemical engineering analyses are underway for a commercial-scale [1000-MW(electric)] divinyl benzene foam-based Inertial Fusion Energy (IFE) Target Fabrication Facility (TFF). This facility is designed to supply 500 000, 4-mm-outer diameter targets per day - coated via interfacial polycondensation, dried with supercritical CO2, sputter coated with Au and/or Pd, and filled with deuterium-tritium layered at cryogenic temperatures and injected into the fusion chamber. Such targets would be used in a direct-drive IFE power plant.

The work uses manufacturing processes being developed in the laboratory, chemical engineering scaleup principles, and established cost-estimating methods. The plant conceptual design includes a process flow diagram, mass and energy balances, equipment sizing and sketches, storage tanks, and facility views.

The cost estimate includes both capital and operating costs. Initial results for a TFF dedicated to one 1000-MW(electric) plant indicate that the costs per target are well within the commercially viable range. Larger TFF plants [3000 MW(electric)] are projected to lead to significantly reduced costs per injected target. Additional cost reductions are possible by producing dried, sputter-coated empty shells at a central facility that services multiple power plants.

The results indicate that the installed capital cost is about $100 million and the annual operating costs will be about $20 million, for a cost per target of about $0.17 each. These design and cost projections assume that a significant process development and scaleup program is successfully completed for all of the basic unit operations included in the facility.

Questions or comments about the site? Contact the ANS Webmaster.